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Abstract. In recent years, there has been a notable increase in the prevalence
of malicious websites, leading to a majority of cyber-attacks and data breaches.
Malicious websites often incorporate JavaScript code to execute attacks on web
browsers. Despite existing methodologies documented in the literature, the anal-
ysis and detection of malicious JavaScript pose significant challenges due to the
dynamic nature of JavaScript and the use of advanced evasion techniques. These
challenges motivate the need for an innovative and efficient approach to com-
prehensively analyze the code to identify its malicious intent. In this paper, we
introduce a monitoring approach for analyzing JavaScript code, which can capture
all of the code’s features at runtime. Our method leverages the security reference
monitor technique to mediate JavaScript security-sensitive executions, including
function calls and property accesses. Therefore, the proposed method can cap-
ture behaviors at runtime regardless of how the code is written, even with recent
advanced evasion techniques like WebAssembly diversification. We have imple-
mented our approach as a JavaScript dynamic analysis framework called JSMBox
in a Chromium-based browser extension. Our experiments demonstrated that JSM-
Box is capable of effectively countering sophisticated evasion techniques found in
modern malicious JavaScript code, including WebAssembly diversification. We
have also evaluated the framework’s ability to classify malicious behaviors based
on a large-scale raw dataset comprising about 20,000 malicious and benign web-
pages. Our developed tool automatically launches the browser to execute these
webpages, records JavaScript code execution events, and captures their execution
frequency as extracted features. We have tested the extracted dataset with various
machine-learning models, yielding promising experimental results that confirm
the effectiveness of our approach and achieve a high accuracy rate.
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1 Introduction

The ubiquity of JavaScript in web development, as highlighted by W3Techs!, poses both
opportunities and risks. While JavaScript enhances user interaction and web functional-
ities, it has also become a vector for cyberattacks, particularly through malicious code
on webpages. Indeed, malicious webpages with JavaScript code that launch attacks on
web browsers have become increasingly problematic in recent years, carrying out threats
against the user’s browser, such as stealing the user’s credentials or downloading addi-
tional malware. Unfortunately, the dynamic nature of the JavaScript language and its
tight integration with the browser make it challenging to detect and block malicious
JavaScript code. JavaScript-based attacks on webpages are a recent trend and top Inter-
net security threats [1], which can defeat traditional signature-based approaches used in
anti-virus tools [2].

Analyzing and detecting malicious JavaScript have received high attention and are
still an active research direction in the literature [3], which employ static analysis,
dynamic analysis, or combined static and dynamic analysis techniques [4]. Static anal-
ysis is a traditional approach that typically extracts the semantic structure of the source
code, abstract syntax tree, strings, objects, and functions to provide features for detec-
tion or machine learning algorithms. However, conventional static analysis methods
typically fail to deal with dynamically generated code and evasion techniques used by
attackers to hide malicious code [5]. On the other hand, dynamic analysis techniques
execute JavaScript code; therefore, they can capture dynamically generated code and run-
time behaviors that static analysis methods might omit. Although JavaScript dynamic
analysis approaches offer advantages in behavioral analysis and runtime features, their
realizations suffer shortcomings [6]. For example, several methods, e.g., [7, 8], lever-
age platform-specific tools such as Windows-based in-browser debuggers that are not
always available in other systems. Cova et al. [2] extract dynamic features from execution
traces using the HtmlUnit with Rhino engine simulation environment, which attackers
can bypass by leveraging the differences between the emulated environment and a real
browser. Recent malicious JavaScript code employed advanced evasion techniques to
detect and subvert dynamic analysis methods [6]. Notably, none of the existing work
can tackle evasion techniques using WebAssembly [9, 10].

The challenges mentioned above highlight the need for a robust analysis method that
can capture dynamic behaviors in potential malicious JavaScript code, especially in the
presence of advanced evasion techniques. To this end, we propose a novel JavaScript run-
time analysis method and framework encompassing all JavaScript executions, including
traditionally on-the-fly generated code and advanced evasion techniques. Our approach
mediates JavaScript’s security-sensitive operations, including function calls and property
accesses at runtime, by leveraging the traditional security reference monitor technique
[11]. Since we monitor the code execution, our method can capture the code behaviors
regard- less of the code’s structure or evasion techniques. Specifically, the contributions
of our work are as follows:

1 According to the World Wide Web Technology Surveys in July 2024 (https://w3techs.com),
98.9% of all websites contain JavaScript code, which will be loaded and executed in a browser
at the end-user.
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— We introduce a novel runtime analysis method and framework by leveraging the
inlined security reference monitor technique to execute JavaScript code in webpages
to capture its behaviors for maliciousness classification and detection. Our framework
is designed to allow customization and fine-tuning of the feature extraction process,
providing the most important features for machine learning models to improve their
accuracy and reliability.

— We have developed the proposed method as a JavaScript library, utilizing the lan-
guage’s flexibility and platform independence to create a lightweight runtime moni-
tor. This allows us to efficiently capture all executions and their contexts, regardless
of their appearances. We have implemented the framework as a browser extension,
meeting the essential requirements for security reference monitors and preventing
evasive code from concealing its behaviors.

— We have demonstrated that our framework is highly proficient in extracting runtime

features that are crucial for machine learning models to accurately classify malicious
JavaScript on large-scale raw datasets. As entailed in Sect. 4, our proposed method
offers a more effective feature extraction solution than traditional static analysis tech-
niques and advances beyond recent dynamic or hybrid analysis approaches in dealing
with malicious code that employs sophisticated evasion tactics, including the latest
WebAssembly obfuscation and diversification.
The remainder of this paper is structured as follows. In Sect. 2, we provide an overview
of the background, review the literature, and discuss related work. Following that,
Section 3 includes a running example that motivates our work, and presents our
approach to developing and implementing the framework. In Sect. 4, we outline the
evaluation of our proposed framework, in comparison with closely related work.
Finally, we conclude our contributions and outline potential future work in Sect. 5.

2 Background and Literature Review

This section briefly describes the background of JavaScript and its analysis methods. We
also discuss challenges in detecting malicious JavaScript code with evasion techniques
and provide examples. Finally, we review the literature and compare related work with
our JSMBox framework.

2.1 JavaScript and Malicious Webpages

JavaScript is one of the most popular versatile scripting languages primarily used for
web development, enabling interactive and dynamic elements on web-pages. When a
browser renders a webpage, it executes embedded JavaScript code, whether inlined,
sourced from the same host, or retrieved externally. This code can access and alter the
webpage’s content and data stored in the browser. Furthermore, JavaScript can dynami-
cally generate and execute new code, as well as load and run external scripts in real time.
These dynamic features can be lever-aged by both developers and attackers [12]. By
inserting harmful JavaScript code, attackers can craft webpages to exploit vulnerabili-
ties in users’ web browsers. These pages can contain various types of malicious content,
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such as malware, phishing forms, or other forms of harmful information. Despite exist-
ing detection tools, JavaScript-based attacks on webpages remain a recent prominent
Internet security concern [1].

2.2 JavaScript Analysis Methods

Existing works propose solutions from several approaches, including static analysis,
dynamic analysis, and hybrid analysis [4] to analyze and detect malicious JavaScript
code. Specifically, static analysis is a traditional approach that typically extracts the
semantic structure of the code to provide features for detection. Unlike static analysis,
which analyzes code without executing it, dynamic analysis runs the code and observes its
interactions with the environment in real-time [13]. By executing code, dynamic analysis
can discern malicious activities that static analysis might overlook [13]. Furthermore,
some existing works use a hybrid approach, combining static and dynamic analysis
techniques. These works typically utilize static analysis to help identify known patterns
and vulnerabilities before execution while using dynamic analysis to provide real-time
insights into the actual behavior of the code during runtime execution [14]. We discuss
these methods in detail in the related work sub-section (Sect. 2.4).

2.3 Evasion Techniques

Evasion techniques of malicious JavaScript code are a critical aspect of contemporary
cyber threats, wherein attackers employ sophisticated strategies to evade detection mech-
anisms and execute malicious actions within web environments. These techniques cir-
cumvent traditional security measures, including antivirus software, intrusion detection
systems, and web application firewalls, posing significant challenges to cybersecurity
professionals and researchers [15]. Obfuscation is one of the commonly used evasion
techniques. This technique complicates the readability and analysis of code by altering
its structure and appearance to obscure its intended functionality. Techniques such as
variable obfuscation, string obfuscation, property encryption, control flow flattening,
dead code injection, debugging protection, self-defending, and polymorphic mutation
are often utilized to impede code analysis [5, 16, 17]. Research indicates that 71% of
examined malicious samples employ obfuscation techniques [18]. We describe common
JavaScript evasion techniques below.

Obfuscation Techniques JavaScript obfuscation is a technique designed to make
JavaScript code difficult to understand and analyze. This mechanism enhances the pro-
tection of the code and makes it more challenging to reverse engineer or replicate. The
primary purpose of obfuscation is to conceal the true intent and structure of the code
without altering its functionality.

Various obfuscation techniques are available for different aspects of JavaScript code.
Below, we list common obfuscation methods identified in the literature, together with
their code snippets to illustrate their techniques.

— Variable and Function Renaming: Changing the names of variables and functions to
make the code more challenging to understand and analyze [15].
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// Original code

function calculateArea(radius) {
const PI = 3.141592653589793;
return PI * radius * radius;

iy

// Obfuscated code

function a(b) {
const ¢ = 3.141592653589793;
return c * b * b;

¥

Listing 2.1. Illustration of variable and function renaming obfuscation method

— Code Compression (Minification): Compression is a technique used to reduce the size
of data or code by encoding information in a more compact format. In the context of
software development and obfuscation, code compression involves removing unnec-
essary characters, spaces, and lines from the source code to make it more concise
[19].

// Original code

function addNumbers(a, b) {
return a + b;

i

// Compressed code
function addNumbers(a,b){return a+b;}

Listing 2.2. Illustration of code compression/minification obfuscation method

— Code Transformation: Altering the structure and form of the code, such as changing
the form of conditional statements or using ternary operators [20].

// Original code
function isEven (num) {

if (num % 2 === 0) {
return true;
} else {
return false;
¥
¥
// Transformed code
function isEven(a){return O0===aj2}

Listing 2.3. Illustration of code transformation obfuscation method

— Dead code injection: Dead code injection is a technique used to inject unused or
non-executing code into a program. This technique can be employed as a form of
obfuscation to make the code more complex and difficult to analyze. Injecting dead
code does not affect the program’s functionality but can confuse and deter reverse
engineers, making it more challenging for them to understand the program’s logic
and structure [21].

function calculateSum(a, b) {
// Dead code injection
if (false) {
console.log("This code will never execute.");
¥
// Actual code
return a + b;
¥
console.log(calculateSum(5, 3));

Listing 2.4. Example of dead code injection obfuscation method
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String Encoding: Converting string literals into other forms, like using Unicode
encoding or Base64 encoding [22].

// Original code

const greating = "Hello world!"

// Obfuscated code

const encodedString = "%48%65%6C%6C%6F%2C%20%77%6F%72%6C%64%21";
const decodedString = unescape (encodedString);
console.log(decodedString); // Output: "Hello, world!"

Listing 2.5. Example of string encoding obfuscation method

Indirect method call: Indirect method call is a programming technique that allows
the determination of which method or function to call dynamically at runtime. This
is typically achieved using function pointers, callback functions, or function objects.
While indirect method calls enhance code flexibility, they may also increase code
complexity and difficulty of understanding [23].

// Define a function

function greet() {
console.log("Hello!");

¥
// Store the function name in a variable
var funcName = '"greet';

// Indirectly call the function
window [funcName] (); // Outputs: Hello!

Listing 2.6. Example of indirect method call obfuscation method

Instruction substitution: Instruction substitution is an obfuscation technique that
involves replacing original instructions in a program with equivalent instructions that
have a different structure or form, thereby increasing the complexity and difficulty of
understanding the code while maintaining its functionality [24].

// Original addition function
function add(a, b) {
return a + b;
¥
// Obfuscated addition function
function add_obfuscated(x, y) {
return x - (-y);

I

Listing 2.7. Illustration of instruction substitution obfuscation method

Non-alphanumeric code: Non-alphanumeric code is an obfuscation technique primar-
ily used to replace alphabetic and numeric characters in code with non-alphanumeric
characters, such as symbols and special characters, to increase the complexity and
difficulty of understanding the code [25].

alert ((+[1[+[11+[1) [++C011C+0111+CL[11+[1) [++[++[[1]1[+[111]
[+0111+CO0 YOI +00) C++[++[++C01T 0+ 01010+ 0110 0+ 0100+ CO Y IT1T+00)
[++[0110+0111+C0 1 031+01) [+011)//"alert"

Listing 2.8. Example of non-alphanumeric code obfuscation method

String splitting: This method involves separating a string or function name into
multiple smaller fragments and then reassembling them at runtime [5].



106 P. H. Phung et al.

// Original code: alert(’This could be malicious’);
// Splited code

var jj = ’s\’)’;
var by = ’rt(\’’;
var dh = ’s c’;
var gf = ’ ma’;
var eu = ’oul’;
var ii = ’iou’;
var fg = ’d be’;
var cg = ’Thi’;
var ax = ’ale’;
var hh = ’lic’;

eval(ax + by + cg + dh + eu + fg +
gf + hh + ii + jj);

Listing 2.9. Illustration of string splitting obfuscation method

WebAssembly obfuscation and diversification WebAssembly (Wasm) is a binary
instruction format that is designed to be executed in a web browser, aiming to pro-
vide a portable, high-performance for web applications that leverage existing codebases
and libraries written in other common programming languages rather than JavaScript.
With that design, WebAssembly has quickly become an essential part of the Web, pro-
viding a great alternative to JavaScript [26]. On the other hand, WebAssembly has also
been used as a sophisticated evasion technique to conceal malicious code in webpages
and evade code analysis and detection techniques. Wobfuscator [9] is a recent research
tool demonstrating a WebAssembly obfuscation technique that transforms parts of the
JavaScript computation into WebAssembly and evades JavaScript malware detection
tools. In [10], the authors developed an automatic binary WebAssembly diversification
evasion technique that can evade most of the cases in popular detectors such as VirusTo-
tal and MINOS. The research findings motivate innovative approaches that can address
the modern technology on the Web.

Browser Fingerprinting Browser fingerprinting is a technology that creates a unique
identifier (fingerprint) by collecting various attributes and behaviors of the client’s web
browser, allowing for user identification and tracking. These attributes may include
the browser’s user agent string, operating system, screen resolution, and installed plu-
gins. Browser fingerprinting is commonly used for purposes such as user tracking,
personalized advertising, and security verification [27-29].

Attackers can utilize this technology to examine specific attributes or configurations
of the client’s web browser to determine if they meet the conditions for an attack. For
example, attackers may inspect the browser’s user agent string or other characteristics to
determine if it is the target browser and then execute malicious code or attacks accord-
ingly. This type of inspection may be conducted to ensure the success of an attack or to
tailor different attack strategies based on the targeted browser.

Browser fingerprinting or detection helps attackers ensure that their exploit is only
triggered on the intended target browsers. This technology is used not only to detect the
browser’s version but also can be used to detect client-side content; it also possesses
strong anti-detection capabilities, making it immune analysis methods [30].
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2.4 Related Work

Methods to analyze webpages and JavaScript code for classifying and detecting mali-
cious JavaScript in the literature can be categorized into three categories: static analy-
sis, dynamic analysis, and a hybrid combination of static and dynamic analysis [4]. In
this section, we briefly discuss the static analysis approaches and review the dynamic
approaches in more detail compared with our approach.

Static Analysis Traditional methods of static analysis are engineered to identify mali-
cious JavaScript code without executing the source code. These methods extract the
features of malicious code to build a malicious feature library. Subsequently, they evalu-
ate the detected code to determine if it matches the features within this malicious feature
library. More recent approaches employ machine learning and deep learning to improve
the detection rate. These works typically transfer detected code into vectors using various
methods, such as fixed-length vector representation, abstract syntax tree (AST), Control
Flow Graph, and Program Dependency Graph [31-35]. Based on these representations,
detection models are built using machine learning classifier algorithms, includ- ing Ran-
dom Forest, Naive Bayes, Support Vector Machine (SVM), and Random Forest. For
example, ZOZZLE [36] generates features based on the hierarchi- cal structure of the
JavaScript AST and employs rapid pattern matching and Naive Bayes classifier for
detection. JStap [33] is a static malicious JavaScript detector that uses lexical analysis,
AST, control flow, and data flow information, utilizing a Random Forest classifier. Ren
et al. [15] studies the effects of obfusca- tion on existing malicious JavaScript detec-
tors, employing a range of classifiers. However, conventional static analysis methods
typically fail to deal with dy- namically generated code and evasion techniques (e.g.,
obfuscation code) used by attackers to conceal malicious code [5]. In a recent study [15]
of represen- tative static analysis-based approaches of detecting obfuscation code, they
find “the feature spaces of existing detectors can only reflect shallow differences in code,
not about the nature of benign and malicious, which can be easily affected by the dif-
ferences brought by obfuscation.” In other words, state-of-the-art static analysis-based
approaches are still unable to detect malicious code that employs evasion techniques
accurately.

Dynamic Analysis Dynamic analysis-based methods involve executing the program to
uncover specific behaviors, even when the program is obfuscated, as indicated by Kim
et al. [30]. Researchers employ these approaches to extract behavioral features during
the execution of code for the classification of malicious code within test environments,
including sandboxes [2, 7, 37, 38], honeypots [39, 40], and browsers [6]. Snyder et al.
[41] investigated the usage patterns of JavaScript features in modern web browsers,
revealing that most features are rarely used and are often blocked by ad and tracking
blockers. Based on how third-party trackers manipulate browser state, Roesner et al. [42]
developed an in-band client-side method for detecting and classifying five kinds of third-
party trackers. Yagemann et al. [43] designed an offline control flow analysis method for
attack detection using deep learning on hardware execution traces to model a program’s
behavior and detect control flow anomalies. In addition, Ratana-worabhan et al. [44]
introduced a runtime heap-spraying detector that examines individual objects in the
heap, interpreting them as code and performing a static analysis to detect malicious intent.
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However, similar to static analysis, one limitation of these methods is their inefficiency
in detecting evasion techniques.

Many studies [4, 45—49] have focused on addressing obfuscated code to overcome
this aforementioned limitation. Li et al. [45] proposed a forensic engine that can effi-
ciently record fine-grained details on the execution of JavaScript programs within the
browser. Additionally, Fang et al. [46] proposed a malicious JavaScript detection model
based on LSTM that extracts features from the semantic level of bytecode and optimizes
the word vector. Furthermore, Song et al. [4] constructed the Program Dependency
Graph to generate semantic slices. Based on this, they designed a malicious JavaScript
detection model utilizing bidirectional LSTM. Neasbitt et al. [47] presented an online
forensic data collection system that allows for recording enough detailed information to
enable a full reconstruction of web security incidents, including phishing attacks. More-
over, Wang et al. [49] designed a deep learning framework that integrates sparse random
projection, a deep learning model, and logistic regression to detect malicious JavaScript
code. Rieck et al. [48] inspected web pages to block the delivery of malicious JavaScript
code and collected static and dynamic code features for ma- licious pattern analysis.
Besides, Jueckstock et al. [6] proposed a dynamic analysis framework hosted inside
V38, the JavaScript engine of the Chrome browser, that logs native function or property
accesses during any JavaScript execution to monitor browser behaviors. In comparison
to others, this method proves significantly more efficient in detecting evasion techniques,
as it can deal with both obfuscated code and browser fingerprinting. However, none of
the existing work can address all evasion techniques discussed previously.

In contrast to the aforementioned research, our proposed method addresses the chal-
lenges of analyzing malicious JavaScript arising from dynamic JavaScript features and
all advanced evasion techniques by capturing the behaviors of both static and dynami-
cally generated code. We present our technical approach and discuss how it can tackle
the challenges in the next section.

3 Technical Approach and Implementation

3.1 A Motivating Example

To present our approach, we consider the following JavaScript snippet example
illustrated in Listing 3.1, providing key concepts underlying our proposed app-
roach. The provided example highlights the code obfuscation of the HTMLCanvas-
Element.prototype.toDataURL method, typically used in malicious code that exploits
fingerprinting attacks to identify and track users [50]. We note that actual malicious
obfuscated JavaScript codes are substantially more sophisticated.

const values = [
72, 84, 77, 76, 67, 97, 110, 118, 97, 115, 69, 108, 101, 109, 101, 110,
116, 46, 112, 114, 111, 116, 111, 116, 121, 112, 101, 46, 116, 111, 68,
97, 116, 97, 85, 82, 76];
const code = values.map(value => String.fromCharCode(value)).join(’’);
eval (code) ;

Listing 3.1. A motivating example
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Since static analysis-based techniques do not execute the code, they encounter chal-
lenges in recognizing these obfuscated scripts [5]. This limitation stems from the inade-
quacies of current machine-learning-based static analysis techniques to accurately iden-
tify malicious code that employs evasion strategies, as highlighted in recent empirical
studies [15]. As a result, the obfuscated JavaScript is executed, activating HTMLCan-
vasElement.prototype.toDataURL method, which malicious actors can manipulate. To
address the challenges in detecting the malicious intent of obfuscated code, various
dynamic analysis strategies [2, 6, 7, 37-40] have been proposed. These strategies aim
to monitor the runtime behavior of JavaScript code because obfuscated code cannot
disguise its activities during execution. However, a notable gap in existing research is
the lack of focus on monitoring the potentially malicious use of the HTMLCanvasEle-
ment.prototype.toDataURL method and the application of machine learning techniques
to determine their maliciousness [50, 51].

3.2 Approach and the Overview of the Proposed Framework

The running example discussed above is one of many challenges in JavaScript code
analysis that motivate our work. To address these challenges, we lever-age the runtime
monitoring approach that executes JavaScript code to log its behaviors, regardless of
their appearance or evasion techniques. Specifically, we propose JSMBox, a dynamic
analysis JavaScript framework that adopts a behavioral sandbox approach [52]. Our
proposed approach aims to monitor and record.

7
[ [ Web Browser
Webpage executes
+
JavaScript
/"""77 monitors
[~ logs - Data Analytics,
Configurations A Security Reference ——————| Extracted . i.e., Machine
e Monitor Features Learning Models
K JSMBox - Our Proposed Framework

Fig. 1. Approach Overview

JavaScript code execution by intercepting its operations, such as property access
and method calls, within the JavaScript execution environment. This method enables
JSMBox to conduct real-time, dynamic analysis of the code, extracting its execution
trace for data engineering and machine learning models. Our primary objective is to
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develop a robust and effective technique for analyzing malware capable of circumvent-
ing the sophisticated evasion methods employed by modern malicious webpages. In
pursuit of this goal, we employ the traditional security reference monitor technique
[11] to oversee code execution, implemented exclusively in JavaScript, thus providing a
more dependable and holistic solution, addressing the limitations of existing static and
dynamic analysis techniques. Furthermore, our approach is lightweight and platform-
independent, allowing for flexible deployment and feature customization. To the best
of our knowledge, no prior research has utilized the reference monitoring method in
JavaScript code for dynamic malware analysis.

Figure 1 depicts the overview of our proposed framework JSMBox. Within this
framework, we incorporate a reference monitor, which runs before the browser loads
and executes any other JavaScript code on a given webpage. This mechanism ensures the
monitor maintains a unique and original reference to the intercepted JavaScript events,
i.e., function calls or property accesses, implemented in the browser. This approach
effectively preserves the original functionality of the webpage while mitigating potential
detection techniques employed in evasive malicious JavaScript code [53]. The monitor
utilizes configuration data, defining intercepted JavaScript events and the properties of
extracted features to record and retain the code execution details, such as the frequency
of event execution, in a log file. This log file is then employed as input for a machine-
learning algorithm to classify the maliciousness of the code. We discuss key components
of our behavioral sandbox approach below.

3.3 The Monitor Initialization and Protection

We developed the monitor using pure JavaScript as a library within an anonymous func-
tion to preserve local references to all original built-in methods that will be utilized
later in the monitoring process, along with other behavioral events to be monitored.
By encapsulating these references within an anonymous function, external code can-
not access them since local variables are protected within an anonymous function. As
the library is the first code to be executed in the browser, we have the advantage of
safeguarding against potential malicious attempts to subvert these built-in methods or
monitored functions. This mechanism empowers the monitor to regulate all subsequent
JavaScript code execution, ensuring complete mediation. Moreover, we can define poli-
cies to detect and prevent malicious code that attempts to bypass the monitoring at
runtime. These mechanisms make our approach tamper-proof [54] and shielded from
evasive detection methods [53]. In addition, they allow us to adapt event monitoring and
policies to tackle potential new evasion techniques over time.

To make our framework more flexible and customizable, we can define JavaScript
execution events, such as function calls and property accesses, as well as behaviors like
the call frequency or sequence, in a configuration file. The monitor will then load this file
and create wrapper functions based on the information provided. We will demonstrate
the initialization steps using pseudo-code in Listing 3.2.
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(O=>{
let $builtins = {}; $builtins.__proto__ = null;

//code to store built-in references, i.e.,:
$builtins.Function.apply=Function.prototype.apply;
// other code (not included) to store built-in references

//code to load the configuration file
let monitored_methods = loadMethods ();
let monitored_properties = loadProperties();

//main code (not included) to intercept and log execution events

HO;
Listing 3.2. Pseudo-code demonstrating the monitor’s initialization steps

3.4 Intercepting Execution Events

We intercepted JavaScript native functions and properties of a global object, such as
document, window to monitor their invocations and accesses, i.e., execution events. For
every method call specified in the configuration file, we start by preserving the original
reference and its aliases. This mechanism ensures that the monitor captures any existing
prototype inheritance chain of the reference to prevent possible attacks in malicious code
[54]. Semi-pseudo code in Listing 3.3 illustrates this interception process. For property
accesses, e.2., document.cookie, we leverage the Object.defineProperty(..) standard API
and define the handler functions whenever a property is accessed, i.e., read or write.

for each {object, method} in monitored_methods {
//... code (not included) find function corresponding to aliases

//keep the original reference:
var original_method = object[method];

//ensure that the stored original apply function will be invoked:
original_method.apply = $builtins.Function.apply;

//define the method:

object [method]l =>() {
//1log the event execution:
event_log(object ,method) ;

//execute the event using the original reference:
return original_method.apply(this, arguments);

Listing 3.3. Semi-pseudo code illustrating the interception process

3.5 Implementation

Developed as a pure JavaScript library, our JSMBox framework can be injected into
a website in multiple ways to monitor the JavaScript code execution on the site. For
example, we can inject the library as the first script to be executed in a webpage using
webpage instrumentation, a web proxy, or a browser extension/add-on. As a framework
for JavaScript analysis, we implement JSM- Box as a browser extension so that we can
effectively collect the logged data and automate the browser with our extension on a large-
scale dataset. A browser extension or add-on is additional code that can be loaded into
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a browser to modify and enhance its capability. Major browsers, including Chromium-
based browsers, such as Google Chrome, Brave, Microsoft Edge, Opera, Vivaldi, and
Firefox, support browser extensions or add-ons [55]. Since our main code is written in
JavaScript, it should be deployable in any browser supporting extensions/add-ons. We
implement and test our code in the Chromium browser, a widely used codebase in many
other browsers. As noted in [55], Chromium-based browser extensions can run in Firefox
with just a few changes. To ensure that our code is executed first before the browser loads
a webpage and executes its JavaScript code, we place our code in the background script
of the browser extension. As discussed in Sect. 3.2, we have confirmed this mechanism
by performing experimental tests.

Before loading a webpage upon request, the browser executes our code, which will
intercept defined methods and properties. When a webpage is loaded in the browser,
any JavaScript event that triggers these methods and properties will invoke our code,
which will log the event and then invoke the original reference. This mechanism ensures
that our code is set to monitor the behaviors of scripts at runtime, capturing right from
the moment a page begins to load. Since we monitor the code at runtime, potential
performance overhead exists. While we have not studied the overhead in this work,
prior work demonstrated that the JavaScript inlined reference monitor approach poses
lightweight performance overhead [52, 56, 57].

Although hundreds of commonly used JavaScript method calls exist, not all are
susceptible to malicious JavaScript [58, 59]. Monitoring an excessively broad range of
events can introduce noise and increase system overhead. Noises in extracted features
reduce the accuracy of machine learning-based detection. In our current implementation
of JSMBox, we have curated a selection of the most critical events with 59 method
calls and property accesses. Benign JavaScript behaviors are selected based on the
most commonly used by any website to maintain the dynamic nature of the website
and keep it functioning. The malicious ones are selected based on their potential to
be misused in web-based attacks, such as executing unauthorized code or scripts, e.g.,
eval, window.open for unwanted pop-up ads and navigator.sendBeacon can be used for
unauthorized tracking. For instance, the charCodeAt(..) method of String is considered
susceptible to misuse as it can be employed to encode data or generate obfuscated code
that is difficult to decipher, thereby facilitating evasion techniques. These methods were
identified based on analysis of human-labeled malicious JavaScript code, used in con-
junction with each other [60-66]. Table 1 lists the 12 selected representative misused
function calls with their descriptions implemented in JSMBox.

Our current JSMBox prototype monitors each event execution, i.e., behavior, and
accumulates its frequency within a session to log the data as features. The resultant
counting is transformed into a feature vector [ay, a2, a3, a4, as, ..., asg], where a;
denotes the frequency of the i-th behavior. As discussed in Sect. 3.2, our JSMBox
framework supports customization of input events and features. However, we leave this
implementation prototype for future work.

4 Evaluation and Experimental Results

To evaluate our approach and the proposed JSMBox framework, we consider two
research questions:
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Table 1. JavaScript behaviors, method calls or property accesses, and their potential misuse by
malicious actors

Method/Property Potential Misuse

charCodeAt A method of the String object used to encode data or create
obfuscated code that is not easily readable, aiding in evasion
techniques

Uint8 Array To handle raw binary data which can be used in memory exploits,
such as buffer overflows, or to process downloaded malicious
payloads

Math.random Domain generation algorithms (DGAs) use Math.random to

generate a large number of domain names that malware can use to
communicate without being easily blocked

document.cookie A sensitive property that can accessed and manipulated to perform
attacks such as session hijacking

toDataURL A method of the H-TMLCanvasElement object to capture the content
of a canvas element, which can be used for browser fingerprinting or
stealing information rendered on the canvas

document.write A method to inject malicious content into a webpage, such as
through XSS attacks

atob/btoa Methods used to encode and decode base64 strings, which is
commonly used in obfuscating payloads and command and control
communications

document.createElement | A method used to dynamically create elements like script or iframe
to load malicious code

window.location A global property used to redirect users to malicious sites or
manipulate page content for phishing or site spoofing

fromCharCode A method of the String object likely used in obfuscation techniques
to hide malicious code

eval A global method that executes text as code, allowing for arbitrary
JavaScript code execution

Image.src A property that can be modified to exfiltrate data

RQ1 : How effective that JSMBox captures monitored behaviors in the existence of
sophisticated evasion techniques in modern malicious JavaScript?

RQ2 : What is the performance of JSMBox as a dynamic analysis tool for malicious
webpage classification in machine-learning models?

We present and discuss our evaluation and experimental results for each research
question below.

4.1 Defeating JavaScript Evasion Techniques

To evaluate how our JSMBox framework can deal with and defeat sophisticated evasion
techniques, as discussed in Sect. 2.3, to monitor defined behaviors for analysis and data
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extraction, we replicate these techniques in webpages. We load these webpages in the
browser with our extension and observe that all behaviors hidden in obfuscation code or
other advanced evasion techniques are captured by JSMBox.

For instance, we simulate the fingerprinting attack by obfuscating this method as
discussed in running example in Listing 3.1, where existing analysis approaches failed
to capture [50, 51]. While running this attack in the browser, our JSMBox framework
can still track and log its execution.

#include <stdio.h>

#include <emscripten.h>

int main()

{
EM_ASM(alert (’Alert from WebAssembly’));
return O;

}
Listing 4.1. A C program invoking a JavaScript alert() method

Another notable example is the case of the WebAssembly evasion technique dis-
cussed earlier. To confirm our approach can capture this new technique, we develop a
simple C program that invokes a JavaScript method, illustrated in Listing 4.1.

00 61 73 6D 01 00 00 00 01 25 07 60 00 01 7F 60 asm
01 7F 00 60 00 00 60 01 7F 01 7F 60 03 7F 7F 7F .
01 7F 60 02 7F 7F 01 7F 60 @3 7F 7E 7F 01 7E 02

20 01 03 65 6E 76 18 65 6D 73 63 72 69 70 74 65

6E S5F 61 73 6D SF 63 6F 6E 73 74 5F 69 6E 74 00 n _
04 03 14 13 02 00 05 01 00 02 00 00 00 01 01 00

02 03 01 03 01 03 00 04 05 01 70 01 01 01 05 06

01 01 82 02 82 02 96 25 06 7F O1 41 80 80 04 0B 5
7F 01 41 00 0B 7F 01 41 00 0B 7F 01 41 00 0B 7F A. . A
00 41 80 80 04 0B 7F 00 41 A0 80 04 0B 07 AB 02 A . . . A

env

emscripte

asm_const_int.

OE 06 6D 65 6D 6F 72 79 02 00 11 5F 5F 77 61 73
6D S5F 63 61 6C 6C 5F 63 74 6F 72 73 00 01 04 6D
61 69 6E 00 03 19 5F SF 69 6E 64 69 72 65 63 74
5F 66 75 6E 63 74 69 6F 6E S5F 74 61 62 6C 65 01
00 06 66 66 6C 75 73 68 00 10 15 65 6D 73 63 72
69 70 74 65 6E S5F 73 74 61 63 6B 5F 69 6E 69 74
00 06 19 65 6D 73 63 72 69 70 74 65 6E S5F 73 74
61 63 6B 5F 67 65 74 S5F 66 72 65 65 00 07 19 65
6D 73 63 72 69 70 74 65 6E SF 73 74 61 63 6B SF
67 65 74 S5F 62 61 73 65 00 08 18 65 6D 73 63 72
69 70 74 65 6E S5F 73 74 61 63 6B 5F 67 65 74 SF
65 6E 64 00 09 19 5F 65 6D 73 63 72 69 70 74 65
6E SF 73 74 61 63 6B 5F 72 65 73 74 6F 72 65 00
11 17 5F 65 6D 73 63 72 69 70 74 65 6E S5F 73 74
61 63 6B 5F 61 6C 6C 6F 63 90 12 1C 65 6D 73 63
72 69 70 74 65 6E 5F 73 74 61 63 6B 5F 67 65 74
S5F 63 75 72 72 65 6E 74 00 13 OFE SF 5F 73 74 61
72 74 SF 65 6D S5F 61 73 6D 03 @4 @D S5F 5F 73 74
6F 70 S5F 65 6D 5F 61 73 6D 03 05 OA B6 04 13 04
90 10 06 0B 73 01 OF 7F 23 00 21 00 41 10 21 01

.memory
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Fig. 2. WebAssembly binary code format (in a.wasm file) compiled from a C program

The C program is compiled into WebAssembly binary code (in a.wasm file, shown
in Fig. 2) and embedded into a webpage. When the webpage is loaded in the browser
with JSMBox, the JavaScript method invoked from WebAssembly code is executed and
logged by our framework, demonstrated in Fig. 3.
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Fig. 3. Test Case: A JavaScript method called from WebAssembly is captured by JSMBox

4.2 Maliciousness Classification

In this section, we will outline our experiments designed to assess the performance of
our framework using machine learning models. Our experiments were conducted on a
powerful CyberRange environment utilizing a virtual machine with Ubuntu 22.04 OS,
12 CPUs, 32 GB of RAM, and a 500 GB hard drive.

Dataset and feature extraction We collected a large number of malicious and benign
website samples from two different datasets: the URLhaus database [67] for malicious
websites, and the Tranco dataset [68] for benign websites. The URLhaus database, which
is part of the Abuse.ch project, is well-known for its comprehensive collection of mali-
cious URLs and is used by organizations such as the FBI, demonstrating its reliability.
On the other hand, Tranco provides a strong website ranking by combining various data
sources to ensure stability and resistance to manipulation, making it an excellent source
of benign websites [68]. Our initial dataset consists of over 200,000 benign websites and
over 200,000 malicious websites from these two sources. We maintain these websites in
two lists to label and evaluate them separately.

For each website, we need to load it into the browser with our extension so that
the JavaScript code can be executed and captured by our framework at run- time. To
automate this process for large-scale datasets, we leverage Puppeteer?, a Node.js library
that allows us to control Chromium-based or Firefox browsers, which is particularly
helpful for browser automation and data collection. We develop and run a script with a
list of websites, launching a new browser instance for each one using Puppeteer, which
is then set to load the browser extension. Once a website is fully loaded, our code checks
for captured data and writes it into a CSV file labeled as malicious or benign. This
process has resulted in a total of approximately 10,000 records from the malicious list,
as well as a similar number of records from the benign list. The data from the two CSV
files are combined to create extracted features for further analysis.

Machine-learning models We have utilized eight well-known machine learning models,
which include Support Vector Machine (SVM), Logistic Regression, Naive Bayes, K-
Nearest Neighbors (KNN), Decision Tree, Random Forest, XG-Boost, and Ensemble

2 https://pptr.dev/
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methods [69, 70], to assess our collected dataset. Each model demonstrates different
levels of accuracy in detecting malicious JavaScript, based on feature vectors extracted
from the JavaScript code. Our comprehensive evaluation results enable users to choose
the most suitable model for optimizing the detection process.

The metadata for our machine learning models can be found in Table 2. We have
carefully fine-tuned specific hyperparameters as outlined in the second column of the
table. One crucial aspect of this fine-tuning process involves optimizing model hyperpa-
rameters through the use of the GridSearchCV method [71, 72]. GridSearchCV conducts
an exhaustive search over a specified parameter grid.

It trains the model on every combination of hyperparameters and selects the best com-
bination based on cross-validation performance. This method performs a comprehensive
search across a predefined grid of parameters, training the model with each parameter
combination and identifying the optimal set based on cross-validation performance [71].
In addition to hyperparameter tuning, our training pipeline incorporates the Synthetic
Minority Over-sampling Technique (SMOTE) [73] to address the class imbalance by
generating synthetic samples within the feature space and enhancing model training
effectiveness. We also use the Standard Scaler as a preprocessing step to standardize the
features by removing the mean and scaling to unit variance. Additionally, we employ the
Support Vector Classifier (SVC) [74, 75], an adaptation of the Support Vector Machine
algorithm, for classification tasks.

Table 2. Differentiation of Machine Learning Models

Model Name Hyperparameter Tuning Pipeline Definition
SVM Yes (GridSearchCV) C: 10000, SMOTE, StandardScaler, SVC
gamma: 1

Logistic Regression | Yes (GridSearchCV) C: [0.001, SMOTE, StandardScaler
0.01, 0.1, 1, 10, 100, 1000]

GaussianNB Yes (GridSearchCV) SMOTE, StandardScaler
varsmoothing: [1e-9, le-8, le-7]

KNN Yes (GridSearchCV) n-neighbors: | SMOTE, StandardScaler
[3,5,7]

Decision Tree No No

Random Forest Yes (GridSearchCV) n-estimators: | SMOTE

300, min-samples-split: 2,
max-depth: None
XGBoost Yes (GridSearchCV) n-estimators: | SMOTE, StandardScaler
200, max-depth: 15, learning-rate:
0.1, subsample: 1.0, colsample-

bytree: 0.6
Ensemble Yes (GridSearchCV for individual | Voting Classifier (Random Forest
models) same as for Random and XGBoost)

Forest and XGBoost
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JSMBox’s effectiveness in classifying malicious JavaScript We have chosen specific
performance metrics to directly address our research objectives, including accuracy,
precision, recall, and F-scores [76, 77]. This methodology enables us to systematically
categorize each JavaScript snippet, whether malicious or benign, into one of four poten-
tial outcomes. Using the classification of malicious snippets as an example: (1) Classified
as malicious if it indeed contains malicious code, marking a true positive (TP) identifica-
tion. (2) Classified as malicious erroneously when it is, in reality, benign, resulting in a
false positive (FP). (3) Classified as benign mistakenly when it contains malicious code,
leading to a false negative (FN). (4) Accurately classified as benign when it contains no
malicious code, constituting a true negative (TN).

Accuracy: the number of instances correctly classified over the total number of
instances.
TP + TN
TP + FP + FN + TN

Accuracy =

— Precision: the number of instances correctly classified as malicious codes over all
instances classified as malicious codes. It indicates the model’s effectiveness in cor-
rectly classifying content as malicious. A high-precision model excels in identifying
malicious content.

TP
P=——
TP + FP

— Recall: the number of instances correctly classified as malicious codes over the total
number of malicious codes. It reflects the model’s ability to correctly identify the
actual positives, emphasizing its capacity to detect most of the malicious content.

TP
R=—-—
TP + FN

— F-Score: a composite measure of precision and recall for malicious code detection.

2%P %R

FO ==7%

Table 3 shows the performance of eight machine learning models, with their effec-
tiveness in spotting malicious JavaScript code scoring between 0.77 and 0.88, and for
benign code, between 0.69 and 0.88, according to the F1-score. The Ensemble model
shines by pinpointing malicious code with the greatest precision, 0.89. Meanwhile, the
Random Forest model is the best at catching almost all malicious codes, achieving the
highest recall of 0.88. When we look at the F1-score, which balances both precision
and recall, Random Forest comes out on top for identifying malicious code, with the
highest score of 0.88. Similarly, when finding benign code, both Random Forest and the
Ensemble models are the best choices, each with top F1-scores of 0.88. The accuracy
column provides an over- all measure of a model’s performance. High accuracy indi-
cates that the model effectively distinguishes benign and malicious JavaScript content.
As observed from the table, the Random Forest model achieved the highest accuracy of
0.88, closely followed by the Ensemble model at 0.87.
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Table 3. Results of Models for Classifying JavaScript Content

Model Benign Malicious Accuracy
Precision | Recall | F1-Score | Precision | Recall | F1-Score | Score
SVM 0.97 0.64 |0.77 0.73 098 |0.84 0.81
Logistic Regression | 0.985 0.57 10.72 0.70 0.99 10.82 0.78
Naive Bayes 1.00 0.53 ]0.69 0.68 1.00 ]0.81 0.77
KNN 0.94 0.64 |0.77 0.73 0.96 |0.83 0.80
Decision Tree 0.97 0.68 |0.80 0.76 098 ]0.85 0.83
Random Forest 0.88 0.88 10.88 0.88 0.88 |0.88 0.88
XGBoost 0.92 0.78 |0.84 0.81 093 |0.87 0.86
Ensemble 0.86 0.90 |0.88 0.89 0.85 |0.87 0.87

5 Conclusion and Future Work

In this paper, we introduced JSMBox, a novel behavioral sandbox approach designed to
address the issues of analyzing and classifying malicious JavaScript code. Our method
effectively addresses the limitations of traditional static and dynamic analysis techniques
by monitoring and controlling JavaScript code behavior at runtime. By leveraging an
inlined security reference monitor, our approach captures the behaviors of both static and
dynamically generated code, including those employing advanced evasion techniques.
We implemented JSM-Box as a runtime JavaScript analysis framework, which can mon-
itor customizable events and their behaviors. The experimental results demonstrated the
effectiveness and efficacy of our method, with machine learning models trained on fea-
tures extracted by the framework achieving high accuracy rates, even when advanced
evasion techniques are used to conceal malicious behaviors.

Future work will focus on enhancing the range of features extracted by the frame-
work, including more sophisticated behaviors and different behavioral patterns. We will
also investigate how to extend the implementation of JSMBox to support multiple web
browsers, ensuring its effectiveness and usability across different browsing environ-
ments. Additionally, we aim to develop a version of the framework that supports mul-
tiple web browsers or can be integrated directly into core browsers for more seamless
and comprehensive monitoring. Experiments with a wider variety of datasets, including
JavaScript files and newer web technologies like WebAssembly, will also be conducted
to ensure the robustness and adaptability of our approach.
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